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1 Trace and Extension Theorems and Introduction to Sobolev
Inequalities

Today, we will discuss

(i) trace and extension (from the boundary) theorems

(ii) Sobolev inequalities.

1.1 The trace theorem

Let U be an open subset of Rd with ∂U being C1 and 1 < p < ∞. Recall that for any
integer k ≥ 0, C∞(U) is dense in W k,p. In particular, C∞(U) is dense in W 1,p(U). Our
aim is to discuss the restriction of u ∈W 1,p(U) to ∂U . Since the boundary is a measure 0
set, this is hard to specify directly (as Lp functions are only well-defined modulo null sets),
so we will achieve this by appealing to the dense subset C∞(U).

Definition 1.1. For u ∈ C1(U), we define the trace to be tr∂U u = u|∂U .

We wish to extend this operation to all of W 1,p(U). Note that tr∂U is linear, so we can
extend it if we know it is bounded.

Theorem 1.1 (Trace theorem, non-sharp). Let U be a bounded, open subsets of Rd with
C1 boundary ∂U , and let 1 < p <∞. Then for u ∈ C1(U), we have

‖ tr∂U u‖Lp(∂U) ≤ C‖u‖W 1,p(U).

(i) As a consequence, tr∂U is extended (uniquely) by continuity (and density of C1(U) ⊆
W 1,p(U)) to tr∂U : W 1,p(U)→ Lp(∂U).

(ii) Moreover, u ∈W 1,p
0 (U) ⇐⇒ tr∂U u = 0.

Remark 1.1. The the map tr∂U : W 1,p(U)→ Lp(∂U) is not surjective.
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Instead of proving this theorem (and you can check the proof in section 5.5 of Evans’
book), we will understand the sharp trace theorem in a restricted setting.

The setting we have in mind is p = 2. The advantage here is that we may use the
theory of the Fourier transform and Plancherel’s theorem. We will also focus on the
domain U = Rd+ = {x ∈ Rd : xd > 0} with boundary {(x′, 0) ∈ Rd} ∼= Rd−1, where
x′ := (x1, . . . , xd−1).

Recall the Fourier transform characterization of the Hk norm:

‖u‖2Hk ' ‖(1 + |ξ|2)k/2û‖2L2
ξ
, k ≥ 0 an integer.

If we replace k with any s ∈ R, we can talk about fractional (L2-based) Sobolev spaces.

Theorem 1.2 (Sharp trace theorem). For u ∈ C1(Rd+) ∩H1(Rd+),

‖ tr∂U u‖H1/2(Rd−1) ≤ C‖u‖H1(Rd+).

Proof. Take u ∈ C1(Rd+)∩H1(Rd+). Using the extension procedure from last time, we can
find a ũ ∈ C1(Rd) such that

‖ũ‖H1(Rd) ≤ C‖u‖H1(Rd+).

Then

tr∂U u(x′) = u(x′, 0)

= ũ(x′, 0)

=

∫
Fxd ũ(x′, ξd)

1

2π
dξd.

On the other hand,

Fx′ tr∂U u(ξ′) =

∫
F ũ(ξ′, ξd)

1

2π
dξd.

For now, let us not assume s = 1/2 so we can see where this choice comes from.

‖ tr∂U u‖Hs(Rd−1) ∼ ‖(1 + |ξ′|2)s/2Fx′ tru(ξ′)‖L2
ξ′

=

∥∥∥∥(1 + |ξ′|2)s/2
∫
F ũ(ξ′, ξd)

1

2π
dξd

∥∥∥∥
L2
ξ′

Writing |ξ|2 = |ξ′|2 + ξ2d,

=

∥∥∥∥∥
∫

(1 + |ξ′|2)s/2

(1 + |ξ′|2 + ξ2d)1/2
((1 + |ξ′|2 + ξ2d)1/2F ũ)

1

2π
dξd

∥∥∥∥∥
L2
ξ′

2



Applying Cauchy-Schwarz,

≤

∥∥∥∥∥
(∫

(1 + |ξ′|2)s

1 + |ξ′|2 + ξ2d
dξd

)1/2

‖(1 + |ξ|′|2 + ξ2d)1/2F ũ‖L2
ξd

∥∥∥∥∥
L2
ξ′

≤ sup
ξ′∈Rd−1

(∫
(1 + |ξ′|2)s

1 + |ξ′|2 + ξ2d
dξd

)1/2

‖(1 + |ξ|′|2 + ξ2d)1/2F ũ‖L2
ξd

‖L2
ξ︸ ︷︷ ︸

‖u‖H1

.

For what s is this supremum < +∞? This is s ≤ 1/2.

1.2 Extension from the boundary

It turns out that the image of tr∂U is exactly H1/2.

Theorem 1.3 (Extension from ∂U). There exists a bounded linear map

ext∂U : H1/2(Rd−1)→ H1(Rd+)

such that tr∂U ◦ ext∂U = id.

Proof. We will use the Poisson semigroup. Suppose we are given g ∈ S(Rd−1), and let
η ∈ C∞c (R) be such that η = 1 for |s| < 1 and η = 0 for |s| > 2. Define u = ext∂U g by

Fx′u(ξ′, xd) = η(xd)e−x
d|ξ′|ĝ(ξ).

This right term is the solution to the Laplace equation on the half-space with boundary
data g.

We need to show that

u ∈ H1(Rd+) ⇐⇒ (i) u, ∂1u, . . . , ∂d−1u ∈ L2

(ii) ∂du ∈ L2.

(i) implies:

‖u‖2L2 + ‖∂1u‖2L2 + · · ·+ ‖∂d−1u‖2L2 = ‖(1 + |ξ′|2)1/2Fx′u(ξ′, xd)‖2L2
ξ′Lxd

= ‖(1 + |ξ′|2)1/2η(xd)e−x
d|ξ′|ĝ(ξ′)‖2L2

ξ′L
2
xd

We can integrate in any order, so integrate the xd integral first.

= ‖ (1 + |ξ′|2)1/4‖η(xd)e−x
d|ξ′|‖L2

xd︸ ︷︷ ︸
NTS this is unif. bdd. ξ′ ∈ Rd−1

(1 + |ξ′|2)1/4ĝ(ξ′)‖2L2
ξ′

We can use the bound
‖η(xd)e−x

d|ξ′|‖2L2
xd

. 1,
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and the substitution bound ∫
η2(xd)e−2x

d|ξ′| dxd .
1

|ξ′|
.

This gives

‖η(xd)e−x
d|ξ′|‖L2

xd
. min

{
1, 1
|ξ′|1/2

}
. (1 + |ξ′|)−1/2.

(ii) implies:

∂xdu = ∂xd(η(xd)v), Fx′v = e−x
d|ξ′|ĝ(ξ)

= η′(xd)v + η∂xdv.

The norm of the first term is bounded by ‖v‖L2(xd∈supp η), and the norm of the second term
is

‖η∂xdv‖L2
x′L

2
ξd

= ‖η∂xd(e−x
d|ξ′|ĝ(ξ′))‖L2

ξ′L
2
xd

= ‖|ξ′| e−xd|ξ′|ĝ(ξ′)η(xd)︸ ︷︷ ︸
Fξ′u

‖L2
ξ′L

2
xd

Using (i),

≤ C‖g‖H1/2 .

Remark 1.2. In fact, by the usual smooth partition of unity argument with boundary
straightening, one can define H1/2(∂U) for ∂U of class C1 and prove the sharp trace
theorem. The independence of this space from the smooth partition of unity and boundary
straightening follows from interpolation theory (which you can find in the 1970 textbook
of Stein).

Remark 1.3. For p 6= 2, im(tr∂U W
1,p(U)) = B

1−1/p,p
p (∂U). This is called the Lp-Besov

space of order 1− 1/p and summability index p. This is also covered in Stein’s book.

1.3 The Gaglierdo-Nirenberg-Sobolev inequality and the Loomis-Whitney
inequality

In a nutshell, Sobolev inequalities are a quantitative generalization of the fundamental
theorem of calculus; we know the size of the derivative of a function, and we want to
control the size of the function.

Theorem 1.4 (Gaglierdo-Nirenberg-Sobolev inequality). Let d ≥ 2. For u ∈ C∞c (Rd), we
have

‖u‖
L

d
d−1

(Rd) ≤ Cd‖Du‖L1(Rd),

where Cd is a constant depending only on d.
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Remark 1.4. The exponent on the left hand side need not be remembered because it can
be derived from scaling considerations (dimensional analysis). In particular, first observe
that both sides are homogeneous: if u 7→ uλ(x) = u(x/λ) for λ > 0, then

‖uλ‖Lp =

(
λd
∫ ∣∣∣u(x

λ

)∣∣∣p 1

λd
dx︸ ︷︷ ︸

=
∫
|u|p dx′

)1/p

= λd/p‖u‖Lp .

On the other hand, D(uλ) = 1
λ(Du)λ, so

‖D(uλ)‖Lp =
1

λ
λd/p‖Du‖Lp .

Now compare these:

‖uλ‖Lp ≤ c‖Duλ‖L1 ∀λ > 0 ⇐⇒ λd/p‖u‖Lp ≤ cλ−1+d‖Du‖L1 ∀λ > 0

⇐⇒ d

p
= d− 1

⇐⇒ p =
d

d− 1
.

All we are doing here is changing the unit of length and requiring that the inequality is
invariant under our unit of length.

We will prove this next time. The key ingredient is another inequality. Denoting
(x1, . . . , x̂j , · · · , xd) = (x1, . . . , xj−1, xj+1, . . . , xd), we have the following.

Lemma 1.1 (Loomis-Whitney inequality). Let d ≥ 2. For j = 1, . . . , d, suppose fj =
fj(x

1, . . . , x̂j , . . . , xd). Then∥∥∥∥∥∥
d∏
j=1

fj

∥∥∥∥∥∥
L1(Rd)

≤
d∏
j=1

‖fj‖Ld−1(Rd−1) .

Proof. Integrate in each variable and apply Hölder:

∫ ∣∣∣∣∣∣
d∏
j=1

fj

∣∣∣∣∣∣ dx1 = |f1|
∫
|f2| · · · |fd| dx1

≤ |f1|‖f2‖Ld−1

x1
· · · ‖fd‖Ld−1

x1
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This is a function of (x2, . . . , xd). Now integrate with respect to the next variable:

∫∫ ∣∣∣∣∣∣
d∏
j=1

fj

∣∣∣∣∣∣ dx1 dx2 ≤
∫
|f1|‖f2‖Ld−1

x1
· · · ‖fd‖Ld−1

x1
dx2

= ‖f2‖Ld−1

x1
‖f1‖Ld−1

x2
‖f3‖Ld−1

x1,x2
· · · ‖fd‖Ld−1

x1,x2
.

Iterating this gives the inequality.

Remark 1.5. The Loomis-Whitney inequality answers the following geometric question.
Suppose E ⊆ Rd, and know the projections πj(E). Can we bound the measure of E by
|πj(E)|?

Yes!

|E| =
∫
1E dx

≤
∫ d∏

j=1

1πj(E)(x
1, . . . , x̂j , . . . , xd) dx

L-W
≤

d∏
j=1

|πj(E)|
1
d−1 .
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